Explicit computation of the q,t-Littlewood–Richardson coefficients
نویسندگان
چکیده
In joint work with Michel Lassalle [C. R. Math. Acad. Sci. Paris 337 (9) (2003), 569–574], we recently presented an explicit expansion formula for Macdonald polynomials. This result was obtained from a recursion for Macdonald polynomials which in turn was derived by inverting the Pieri formula. We use these formulae here to explicitly compute the q, t-Littlewood– Richardson coefficients, thus solving a problem posed by Ian G. Macdonald.
منابع مشابه
Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials
We show that the Littlewood-Richardson coefficients are values at 1 of certain parabolic Kazhdan-Lusztig polynomials for affine symmetric groups. These q-analogues of Littlewood-Richardson multiplicities coincide with those previously introduced in [21] in terms of ribbon tableaux.
متن کاملA max-flow algorithm for positivity of Littlewood-Richardson coefficients
Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group GL(n,C). They have a wide variety of interpretations in combinatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the positivity of Littlewood-Richardson coefficients in polynomial time...
متن کاملCombinatorics and geometry of Littlewood-Richardson cones
We present several direct bijections between different combinatorial interpretations of the Littlewood-Richardson coefficients. The bijections are defined by explicit linear maps which have other applications.
متن کاملA Basis for the GLn Tensor Product Algebra
This paper focuses on the GLn tensor product algebra, which encapsulates the decomposition of tensor products of arbitrary irreducible representations of GLn. We will describe an explicit basis for this algebra. This construction relates directly with the combinatorial description of Littlewood-Richardson coefficients in terms of Littlewood-Richardson tableaux. Philosophically, one may view thi...
متن کاملSmall Littlewood-Richardson coefficients
We develop structural insights into the Littlewood-Richardson graph, whose number of vertices equals the Littlewood-Richardson coefficient cνλ,μ for given partitions λ, μ and ν. This graph was first introduced in [BI12], where its connectedness was proved. Our insights are useful for the design of algorithms for computing the Littlewood-Richardson coefficient: We design an algorithm for the exa...
متن کامل